1956年,在达特茅斯会议上首次提出“人工智能”的概念,计算机专家们梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器。然而在此后的十几年的时间里,由于网络能力不够,无法解决复杂的问题,人工智能进入第一次低谷。1980年,BP算法的出现,神经网络得到优化,但在1990年,由于计算能力受限,无法进行大规模的数据训练,人工智能再次进入低谷。直到2006年,深度学习的神经网络被提出,经过多年的发展,2013年,深度学习在视觉识别和语音识别上取得部分能力超越人类。
纵观人工智能60年的发展历史,经历了多次“寒冬”,其中一个很重要的原因就是算法或神经网络无法继续深入下去。直到深度学习取得突破,则直接推动了人工智能的蓬勃发展。